Non-Equilibrium Gating in Cardiac Na + Channels

Author:

Clancy Colleen E.1,Tateyama Michihiro1,Liu Huajun1,Wehrens Xander H.T.1,Kass Robert S.1

Affiliation:

1. From the Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY.

Abstract

Background— Many long-QT syndrome (LQTS) mutations in the cardiac Na + channel result in a gain of function due to a fraction of channels that fail to inactivate (burst), leading to sustained current (I sus ) during depolarization. However, some Na + channel mutations that are causally linked to cardiac arrhythmia do not result in an obvious gain of function as measured using standard patch-clamp techniques. An example presented here, the SCN5A LQTS mutant I1768V, does not act to increase I sus (<0.1% of peak) compared with wild-type (WT) channels. In fact, it is difficult to reconcile the seemingly innocuous kinetic alterations in I1768V as measured during standard protocols under steady-state conditions with the disease phenotype. Methods and Results— We developed new experimental approaches based on theoretical analyses to investigate Na + channel gating under non-equilibrium conditions, which more closely approximate physiological changes in membrane potential that occur during the course of a cardiac action potential. We used this new approach to investigate channel-gating transitions that occur subsequent to channel activation. Conclusions— Our data suggest an original mechanism for development of LQT-3 arrhythmias. This work demonstrates that a combination of computational and experimental analysis of mutations provides a framework to understand complex mechanisms underlying a range of disorders, from molecular defect to cellular and systems function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3