Increased Expression of Thrombospondin-1 in Vessel Wall of Diabetic Zucker Rat

Author:

Stenina Olga I.1,Krukovets Irene1,Wang Kai1,Zhou Zhongmin1,Forudi Farhad1,Penn Marc S.1,Topol Eric J.1,Plow Edward F.1

Affiliation:

1. From the Joseph J. Jacobs Center for Thrombosis and Vascular Biology (O.I.S., I.K., E.J.T., E.F.P.), Department of Molecular Cardiology (O.I.S., I.K., E.J.T., E.F.P.), and Department of Cardiovascular Medicine (K.W., Z.Z., F.F., M.S.P., E.J.T.), Cleveland Clinic Foundation, Cleveland, Ohio.

Abstract

Background— Thrombospondin-1 (TSP-1) expression in the vascular wall has been related to the development of atherosclerotic lesions and restenosis. TSP-1 promotes the development of neointima and has recently been associated with atherogenesis at a genetic level. Because TSP-1 expression is responsive to glucose stimulation in mesangial cells, we hypothesized that glucose may stimulate its production by vascular cells. Thus, TSP-1 expression in the blood vessel wall may increase, providing a molecular link between diabetes and accelerated vascular lesion development. Methods and Results— To determine whether the expression level of TSP-1 in vessel wall is increased in diabetes, aorta and carotid arteries of Zucker rats were used for immunostaining, Western blotting, and in situ RNA hybridization. A significant increase in TSP-1 expression was found in the adventitia of blood vessels from diabetic rats. Consistent with the well-known antiangiogenic effect of TSP-1, the number of vasa vasorum was reduced in aortas from diabetic rats. In cultured endothelial cells, vascular smooth muscle cells, and fibroblasts, TSP-1 expression increased in response to glucose stimulation (>30-fold). After balloon catheter injury to carotid arteries, expression of TSP-1 protein and mRNA was higher at all time points in the vessels of diabetic rats. Conclusions— Increased expression of TSP-1 in blood vessels in diabetes may represent a new link between diabetes, atherogenesis, and accelerated restenosis. This increase in TSP-1 production may be a direct response of vascular cells to glucose.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3