Diabetes-Induced Oxidative Stress and Low-Grade Inflammation in Porcine Coronary Arteries

Author:

Zhang LiFeng1,Zalewski Andrew1,Liu Yuchuan1,Mazurek Tomasz1,Cowan Scott1,Martin Jack L.1,Hofmann Susanna M.1,Vlassara Helen1,Shi Yi1

Affiliation:

1. From the Departments of Surgery (L.Z., Y.L., T.M., S.C., Y.S.) and Medicine (A.Z.), Thomas Jefferson University, Philadelphia, Pa; GlaxoSmithKline (A.Z.), King of Prussia, Pa; Division of Cardiology (J.L.M.), Bryn Mawr Hospital, Bryn Mawr, Pa; and Division of Experimental Diabetes and Aging (S.M.H., H.V.), Mount Sinai School of Medicine, New York, NY.

Abstract

Background— Multiple pathways contribute to accelerated coronary atherosclerosis in diabetics, including increased oxidative stress and inflammatory burden. Accordingly, the mechanisms of abnormal formation of reactive oxygen species and the changes in inflammatory gene expression were examined in diabetic coronary arteries. Methods and Results— In pigs with streptozotocin-induced diabetes, superoxide formation was augmented in coronary media and adventitia because of increased NAD(P)H oxidase activity (3 months) accompanied by upregulated expression of its cytosolic subunit, p22 phox . Diabetes-induced oxidative stress resulted in the inflammatory response in the adventitia (increased expression of interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, vascular cell adhesion molecule-1 [VCAM-1]) and in the media (VCAM-1). To examine the mechanisms of these changes, studies with isolated coronary fibroblasts were undertaken. Advanced glycation end products (AGEs), rather than glucose itself, upregulated expression of interleukin-6, VCAM-1, and monocyte chemotactic protein-1 mRNAs. These results were paralleled by increased interleukin-6 secretion ( P <0.01) and augmented leukocyte adhesion to AGE-stimulated coronary cells ( P <0.001). AGEs increased expression of phosphorylated forms of mitogen-activated protein kinases in coronary cells (ERK1/2 and JNK) and resulted in redox-sensitive expression of inflammatory genes that was inhibited by several inhibitors of oxidative pathways [NAD(P)H oxidase inhibitors, N -acetylcysteine, and pyrrolidine dithiocarbamate]. Conclusions— Diabetes increased NAD(P)H oxidase activity and oxidative stress, producing inflammatory responses in porcine coronary media and adventitia. AGEs activated ERK1/2 and JNK signaling pathways and induced the expression of several inflammatory genes in coronary cells in a redox-sensitive manner. These results suggest the involvement of AGEs in the development of accelerated coronary atherosclerosis in diabetes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3