Patient-Specific Dose and Radiation Risk Estimation in Pediatric Cardiac Catheterization

Author:

Bacher Klaus1,Bogaert Evelien1,Lapere Régine1,De Wolf Daniël1,Thierens Hubert1

Affiliation:

1. From the Department of Medical Physics and Radiation Protection (K.B., E.B., R.L., H.T.), Ghent University, and the Department of Pediatric Cardiology (D.D.W.), Ghent University Hospital, Gent, Belgium.

Abstract

Background— Because of the higher radiosensitivity of infants and children compared with adults, there is a need to evaluate the doses delivered to pediatric patients who undergo interventional cardiac procedures. However, knowledge of the effective dose in pediatric interventional cardiology is very limited. Methods and Results— For an accurate risk estimation, a patient-specific Monte Carlo simulation of the effective dose was set up in 60 patients with congenital heart disease who underwent diagnostic (n=28) or therapeutic (n=32) cardiac catheterization procedures. The dose-saving effect of using extra copper filtration in the x-ray beam was also investigated. For diagnostic cardiac catheterizations, a median effective dose of 4.6 mSv was found. Therapeutic procedures resulted in a higher median effective dose of 6.0 mSv because of the prolonged use of fluoroscopy. The overall effect of inserting extra copper filtration into the x-ray beam was a total effective dose reduction of 18% with no detrimental effect on image quality. An excellent correlation between the dose-area product and effective patient dose was found ( r =0.95). Hence, dose-area product is suitable for online estimation of the effective dose with good accuracy. With all procedures included, the resulting median lifetime risk for stochastic effects was 0.08%. Conclusions— Because of the high radiation exposure, it is important to monitor patient dose by dose-area product instrumentation and to use additional beam filtration to keep the effective dose as low as possible in view of the sensitivity of the pediatric patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3