Allopurinol Attenuates Left Ventricular Remodeling and Dysfunction After Experimental Myocardial Infarction

Author:

Engberding Niels1,Spiekermann Stephan1,Schaefer Arnd1,Heineke André1,Wiencke Antje1,Müller Maja1,Fuchs Martin1,Hilfiker-Kleiner Denise1,Hornig Burkhard1,Drexler Helmut1,Landmesser Ulf1

Affiliation:

1. From Abteilung Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany.

Abstract

Background— Accumulating evidence suggests a critical role for increased reactive oxygen species (ROS) production in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). Increased expression of xanthine oxidase (XO), a major source of ROS, has recently been demonstrated in experimental and clinical heart failure; however, a potential role for LV remodeling processes remains unclear. We therefore studied the effect of long-term treatment with allopurinol, a potent XO inhibitor, on myocardial ROS production and LV remodeling and dysfunction after MI. Methods and Results— Mice with extensive anterior MI (n=105) were randomized to treatment with either vehicle or allopurinol (20 mg · kg −1 · d −1 by gavage) for 4 weeks starting on day 1 after surgery. Infarct size was similar among the groups. XO expression and activity were markedly increased in the remote myocardium of mice after MI, as determined by electron spin resonance spectroscopy. Myocardial ROS production was increased after MI but markedly reduced after allopurinol treatment. Importantly, allopurinol treatment substantially attenuated LV cavity dilatation and dysfunction after MI, as assessed by echocardiography, and markedly reduced myocardial hypertrophy and interstitial fibrosis. Conclusion— The present study reveals a novel beneficial effect of treatment with allopurinol, ie, a marked attenuation of LV remodeling processes and dysfunction after experimental MI. Allopurinol treatment therefore represents a potential novel strategy to prevent LV remodeling and dysfunction after MI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3