Attenuation of Oxidative Stress and Remodeling by Cardiac Inhibitor of Metalloproteinase Protein Transfer

Author:

Cox Michael J.1,Hawkins Urseline A.1,Hoit Brian D.1,Tyagi Suresh C.1

Affiliation:

1. From the Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Ky (M.J.C., U.A.H., S.C.T.); and Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, Ohio (B.D.H.).

Abstract

Background— Matrix metalloproteinase (MMP) and cardiac inhibitor of metalloproteinase (CIMP) are coexpressed in the heart. Although it is known that oxidative stress activates MMP and CIMP inhibits MMP, it is unclear whether CIMP administration attenuates oxidative stress and MMP-mediated cardiac dilatation. Methods and Results— Arteriovenous fistula (AVF) was created in C57BL/J6 mice, and CIMP was administered to AVF and sham mice by protein transfer into peritoneal cavity by minipump for 4 weeks. Mice were grouped as follows: sham; sham+CIMP; AVF; and AVF+CIMP (n=6). In vivo left ventricular (LV) pressure was measured. Plasma and LV tissue levels of CIMP were measured by Western analysis. LV levels of NADPH oxidase activity, marker of oxidative stress, were increased in AVF mice and decreased in AVF mice treated with CIMP. Compared with sham, CIMP was decreased in AVF mice, and CIMP protein transfer increased plasma and LV tissue levels of CIMP in AVF mice; there was no increase in sham animals. In situ zymography demonstrated a robust increase in MMP activity in the hearts from AVF mice compared with sham, and treatment with CIMP decreased MMP activity. In AVF mice, the cardiac pressure-length relationship was similar to that observed in sham mice after administration of CIMP. Contractile responses of normal LV rings were measured in the presence and absence of CIMP. CIMP shifted the pressure-length relationship to the left, attenuated LV dilatation, and had no effect on CaCl 2 -mediated contraction. Conclusions— Treatment of AVF mice with CIMP significantly abrogated the contractile dysfunction and decreased the oxidative stress in volume overload–induced heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3