Stimulation of Arteriogenesis in Skeletal Muscle by Microbubble Destruction With Ultrasound

Author:

Song Ji1,Qi Ming1,Kaul Sanjiv1,Price Richard J.1

Affiliation:

1. From the Department of Biomedical Engineering (J.S., M.Q., S.K., R.J.P.) and the Cardiovascular Division (S.K.), University of Virginia, Charlottesville.

Abstract

Background— The application of ultrasound to microbubbles in skeletal muscle creates capillary ruptures. We tested the hypothesis that this bioeffect could be used to stimulate the growth and remodeling of new arterioles via natural repair processes, resulting in an increase in skeletal muscle nutrient blood flow. Methods and Results— Pulsed ultrasound (1 MHz) was applied to exposed rat gracilis muscle after intravenous microbubble injection. Capillary rupturing was visually verified by the presence of red blood cells in the muscle, and animals were allowed to recover. Ultrasound-microbubble–treated and contralateral sham-treated muscles were harvested 3, 7, 14, and 28 days later. Arterioles were assessed by smooth muscle α-actin staining, and skeletal muscle blood flow was measured with 15-μm fluorescent microspheres. An ≈65% increase in arterioles per muscle fiber was noted in treated muscles compared with paired sham-treated control muscles at 7 and 14 days after treatment. This increase in arterioles occurred across all studied diameter ranges at both 7 and 14 days after treatment. Arterioles per muscle fiber in sham-treated and untreated control muscles were comparable, indicating that the surgical intervention itself had no significant effect. Hyperemia nutrient blood flow in treated muscles was increased 57% over that in paired sham-treated control muscles. Conclusions— Capillary rupturing via microbubble destruction with ultrasound enhances arterioles per muscle fiber, arteriole diameters, and maximum nutrient blood flow in skeletal muscle. This method has the potential to become a clinical tool for stimulating blood flow to organs affected by occlusive vascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3