Reentrant ventricular arrhythmias in the late myocardial infarction period. 9. Electrophysiologic-anatomic correlation of reentrant circuits.

Author:

Mehra R,Zeiler R H,Gough W B,El-Sherif N

Abstract

We studied isochronal maps of ventricular activation during ventricular arrhythmias induced by programmed premature stimulation in dogs 3-5 days after ligation of the left anterior descending coronary artery. The entire epicardial surface and selective intramural sites were recorded using a computerized multiplexing technique. The electrophysiologic data were correlated with the anatomic characteristics of the infarction. In nine of 17 dogs (55%), the induced ventricular rhythm was due to reentrant activation in the surviving epicardial layer overlying the infarction. The irregular epicardial layer (up to 4 mm thick) had grossly intact myocardial fibers on microscopic examination but showed abnormal electrophysiologic characteristics. The stimulated premature beat that initiated reentry produced a continuous arc of functional conduction block within the surviving epicardial layer. The activation wave front circulated slowly around both ends of the arc of block, rejoined on the distal side of the arc before breaking through the arc to reactivate an area proximal to the block. This resulted in splitting of the initial single arc of block into two arcs. Reentrant activation continued as two synchronous circuits that traveled clockwise around one arc and counterwise around the other. Reentry spontaneously terminated when the leading edge of both reentrant circuits encountered refractory tissue, resulting in the coalescence of the two arcs of block into one. The present study may increase the understanding of the electrophysiologic mechanism of some ventricular repetitive responses and tachyarrhythmias induced by programmed premature stimulation in the clinical laboratory.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3