Mechanism of Ventricular Defibrillation for Near-Defibrillation Threshold Shocks

Author:

Chattipakorn Nipon1,Banville Isabelle1,Gray Richard A.1,Ideker Raymond E.1

Affiliation:

1. From the Departments of Medicine (N.C., R.E.I.), Biomedical Engineering (I.B., R.A.G., R.E.I.), and Physiology (R.E.I.), University of Alabama at Birmingham.

Abstract

Background To study the mechanism by which shocks succeed (SDF) or fail (FDF) to defibrillate, global cardiac activation and recovery and their relationship to defibrillation outcome were investigated for shock strengths with approximately equal SDF and FDF outcomes (DFT 50 ). Methods and Results In 6 isolated pig hearts, dual-camera video imaging was used to record optically from ≈8000 sites on the anterior and posterior ventricular surfaces before and after 10 DFT 50 biphasic shocks. The interval between the shock and the last ventricular fibrillation activation preceding the shock (coupling interval, CI) and the time from shock onset to 90% repolarization of the immediate postshock action potential (RT 90 ) were determined at all sites. Of 60 shocks, 31 were SDF. The CI (59±7 versus 52±6 ms) and RT 90 (108±19 versus 88±8 ms) were significantly longer for SDF than FDF episodes. Spatial dispersions of CI (36±5 versus 34±3 ms) and RT 90 (40±16 versus 40±8 ms) were not significantly different for SDF versus FDF episodes. The first global activation cycle appeared focally on the left ventricular apical epicardium 78±32 ms after the shock. Conclusions For near-threshold shocks, defibrillation outcome correlates with the electrical state of the heart at the time of the shock and on RT. Global dispersion of RT was similar in both SDF and FDF episodes, suggesting that it is not crucial in determining defibrillation outcome after DFT 50 shocks.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3