Affiliation:
1. Vascular Biology Center Medical College of Georgia at Augusta University Augusta GA
2. Division of Endocrinology Department of Pediatrics Center for Pediatric Research in Obesity and Metabolism (CPROM) Pittsburg PA
3. Vascular Medicine Institute (VMI) University of Pittsburgh PA
4. Division of Cardiology Department of Medicine Medical College of Georgia at Augusta University Augusta GA
Abstract
BackgroundCardiovascular disease is currently the leading cause of death in patients with human immunodeficiency virus on combination antiretroviral therapy. Although the use of the protease inhibitor ritonavir has been associated with increased prevalence of cardiovascular disease, the underlying mechanisms remain ill‐defined. Herein, we tested the hypothesis that ritonavir‐mediated lipoatrophy causes endothelial dysfunction via reducing endothelial leptin signaling.Methods and ResultsLong‐term (4 weeks) but not short‐term (3 days) treatment with ritonavir reduced body weight, fat mass, and leptin levels and induced endothelial dysfunction in mice. Moreover, ritonavir increased vascular NADPH oxidase 1, aortic H2O2levels as well as interleukin‐1β, GATA3 (GATA binding protein 3), the macrophage marker (F4/80), and C‐C chemokine receptor type 5 (CCR5) expression. Reactive oxygen species scavenging with tempol restored endothelial function, and both NADPH oxidase 1 and CCR5 deletion in mice protected from ritonavir‐mediated endothelial dysfunction and vascular inflammation. Remarkably, leptin infusion markedly improved endothelial function and significantly reduced vascular NADPH oxidase 1, interleukin‐1β, GATA3, F4/80, and CCR5 levels in ritonavir‐treated animals. Selective deficiency in endothelial leptin receptor abolished the protective effects of leptin infusion on endothelial function. Conversely, selective increases in endothelial leptin signaling with protein tyrosine phosphatase deletion blunted ritonavir‐induced endothelial dysfunction.ConclusionsAll together, these data indicate that ritonavir‐associated endothelial dysfunction is a direct consequence of a reduction in adiposity and leptin secretion, which decreases endothelial leptin signaling and leads to a NADPH oxidase 1–induced, CCR5‐mediated reduction in NO bioavailability. These latter data also introduce leptin deficiency as an additional contributor to cardiovascular disease and leptin as a negative regulator of CCR5 expression, which may provide beneficial avenues for limiting human immunodeficiency virus infection.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献