Aging Impairs Mitochondrial Function and Mitophagy and Elevates Interleukin 6 Within the Cerebral Vasculature

Author:

Tyrrell Daniel J.1ORCID,Blin Muriel G.1,Song Jianrui1,Wood Sherri C.1,Goldstein Daniel R.123ORCID

Affiliation:

1. Department of Internal Medicine University of Michigan Ann Arbor MI

2. Department of Microbiology and Immunology University of Michigan Ann Arbor MI

3. Institute of Gerontology University of Michigan Ann Arbor MI

Abstract

Background The blood‐brain barrier (BBB) is critical for cerebrovascular health. Although aging impairs the integrity of the BBB, the mechanisms behind this phenomenon are not clear. As mitochondrial components activate inflammation as mitochondria become dysfunctional, we examined how aging impacts cerebrovascular mitochondrial function, mitophagy, and inflammatory signaling; and whether any alterations correlate with BBB function. Methods and Results We isolated cerebral vessels from young (2–3 months of age) and aged (18–19 months of age) mice and found that aging led to increases in the cyclin‐dependent kinase inhibitor 1 senescence marker with impaired mitochondrial function, which correlated with aged mice exhibiting increased BBB leak compared with young mice. Cerebral vessels also exhibited increased expression of mitophagy proteins Parkin and Nix with aging. Using mitophagy reporter (mtKeima) mice, we found that the capacity to increase mitophagy from baseline within the cerebral vessels on rotenone treatment was reduced with aging. Aging within the cerebral vessels also led to the upregulation of the stimulator of interferon genes and increased interleukin 6 (IL‐6), a cytokine that alters mitochondrial function. Importantly, exogenous IL‐6 treatment of young cerebral vessels upregulated mitophagy and Parkin and impaired mitochondrial function; whereas inhibiting IL‐6 in aged cerebral vessels reduced Parkin expression and increased mitochondrial function. Furthermore, treating cerebral vessels of young mice with mitochondrial N‐formyl peptides upregulated IL‐6, increased Parkin, and reduced Claudin‐5, a tight junction protein integral to BBB integrity. Conclusions Aging alters the cerebral vasculature to impair mitochondrial function and mitophagy and increase IL‐6 levels. These alterations may impair BBB integrity and potentially reduce cerebrovascular health with aging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3