Vascular Smooth Muscle Cell–Directed Overexpression of Heme Oxygenase-1 Elevates Blood Pressure Through Attenuation of Nitric Oxide–Induced Vasodilation in Mice

Author:

Imai Tomihiko1,Morita Toshisuke1,Shindo Takayuki1,Nagai Ryozo1,Yazaki Yoshio1,Kurihara Hiroki1,Suematsu Makoto1,Katayama Shigehiro1

Affiliation:

1. From the Fourth Department of Internal Medicine (T.I., T.M., S.K.), Saitama Medical School, Saitama; Department of Cardiovascular Medicine (T.S.), Graduate School of Medicine, University of Tokyo; International Medical Center of Japan (Y.Y.), Tokyo; Division of Integrative Cell Biology, Department of Embryogenesis (H.K.), Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto; and Department of Biochemistry and Integrative Medical Biology (M.S.), School of Medicine, Keio...

Abstract

Abstract —To elucidate pathophysiological roles of heme oxygenase (HO)-1 in regulation of vascular tone in vivo, we have developed and characterized transgenic (Tg) mice that overexpress HO-1 site specifically in vascular smooth muscle cells (VSMCs). The Tg mice were generated by use of human HO-1 cDNA under the control of SM22-α promoter. The HO-1 gene overexpression was demonstrated by Northern blot analysis and coincided with increases in the protein expression in VSMCs and total HO activities. Tg mice exhibited a significant increase in arterial pressure at various ages and displayed impaired nitrovasodilatory responses in isolated aortic segments versus nontransgenic littermates while enhancing their nitric oxide (NO) production. The pressure of Tg mice was unchanged by systemic administration of either N ω -nitro- l -arginine or SNP. Furthermore, the isolated aorta in these mice exhibited lesser extents of NO-elicited cGMP elevation via soluble guanylate cyclase (sGC), while exhibiting no notable downregulation of sGC expression. Such impairment of the NO-elicited cGMP increase was restored significantly by tin protoporphyrin IX, an HO inhibitor. On the other hand, 3-(5′-hydroxymethyl-2′ furyl)-1-benzyl-indazol (YC-1), an NO-independent activator of sGC, increased cGMP and relaxed aortas from Tg mice to levels comparable with those from nontransgenic mice, which indicates that contents of functionally intact sGC are unlikely to differ between the two systems. These findings suggest that site-specific overexpression of HO-1 in VSMCs suppresses vasodilatory response to NO and thereby leads to an elevation of arterial pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3