Increased Expression and Activity of RhoA Are Associated With Increased DNA Synthesis and Reduced p27 Kip1 Expression in the Vasculature of Hypertensive Rats

Author:

Seasholtz Tammy M.1,Zhang Tong1,Morissette Michael R.1,Howes Amy L.1,Yang Amy H.1,Brown Joan Heller1

Affiliation:

1. From the University of California, San Diego, Department of Pharmacology, La Jolla.

Abstract

Abstract— We have previously shown that the function of the small G protein Rho is required for vascular smooth muscle cell proliferation and migration. We hypothesized that changes in Rho or Rho signaling might contribute to enhanced vascular proliferative responses associated with hypertension. Western blot analysis revealed that total RhoA expression was ≈2-fold higher in aortas, tail arteries, and aortic smooth muscle cells (ASMCs) obtained from adult male spontaneously hypertensive rats (SHR) compared with those from Wistar Kyoto rats (WKY). An increase in active GTP-bound RhoA was detected in aortic homogenates by affinity precipitation with the RhoA effector rhotekin and by examining RhoA-[ 35 S]GTPγS binding. RhoA protein and activity were also increased in vessels from rats treated with N -nitro- l -arginine methyl ester to increase blood pressure. Thrombin-stimulated RhoA activation was also significantly greater in ASMCs from SHR. As a functional correlate of these changes in Rho signaling, thrombin-stimulated DNA synthesis was enhanced in tail arteries and ASMCs from SHR. Expression of the cyclin-dependent kinase inhibitor p27 Kip1 was decreased by two thirds in SHR, and this decrease was mimicked in ASMCs by expression of a constitutively active (GTPase-deficient) mutant of RhoA. Wortmannin (10 nmol/L) fully inhibited the decrease in p27 Kip1 induced by RhoA, and a membrane-targeted catalytic subunit of phosphatidylinositol-3 kinase (PI3K [p110 CAAX ]) decreased p27 Kip1 expression, suggesting that RhoA signals through PI3K. These data provide evidence that RhoA brings about changes in DNA synthesis through reduced expression of p27 Kip1 , mediated in part via PI3K, and suggest that increases in RhoA expression and activity contribute to the enhanced vascular responsiveness observed in hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3