Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals.

Author:

von Harsdorf R1,Schott R J1,Shen Y T1,Vatner S F1,Mahdavi V1,Nadal-Ginard B1

Affiliation:

1. Laboratory of Molecular and Cellular Cardiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA.

Abstract

We have investigated the regulated expression of genes injected into the heart of large mammals in situ. Reporter constructs using the chloramphenicol acetyltransferase gene under the control of muscle-specific beta-myosin heavy chain (beta-MHC) or promiscuous (mouse sarcoma virus) promoters were injected into the canine myocardium. There was a linear dose-response relation between the level of gene expression and the quantity of plasmid DNA injected between 10 and 200 micrograms per injection site. The level of reporter gene expression did not correlate with the amount of injury imposed on the cardiac tissue. There was no regional variation in expression of injected reporter genes throughout the left ventricular wall. By use of both the mouse sarcoma virus and a muscle-specific beta-MHC promoter, reporter gene expression was one to two orders of magnitude greater in the heart than in skeletal muscle. Expression in the left ventricle was threefold higher than in the right ventricle. Chloramphenicol acetyltransferase activity was detected at 3, 7, 14, and 21 days after injection, with maximal expression at 7 days after injection. Statistical analysis of coinjection experiments revealed that coinjection of a second gene construct (Rous sarcoma virus-luciferase) is useful in the control of transfection efficiency in vivo. Furthermore, using reporter constructs containing serial deletions of the 5' flanking region of the beta-MHC gene, we performed a series of experiments that demonstrate the utility of this model in mapping promoter regions and identifying important regulatory gene sequences in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3