Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin.

Author:

Wettwer E1,Amos G J1,Posival H1,Ravens U1

Affiliation:

1. Institut für Pharmakologie, Medizinische Einrichtungen der Universität-GH Essen, Germany.

Abstract

In various mammalian species, shapes of action potentials vary within the cardiac wall because of differences in transient outward current (Ito). A prominent Ito exists in human ventricular myocytes, but cells have not been separated according to their original localization. Human ventricular myocytes were isolated from separated subepicardial and subendocardial tissue, and regional variations in Ito were studied. Ito was larger in subepicardial than subendocardial cells. Current density at +60 mV was 7.9 +/- 0.7 pA/pF (n = 28) in subepicardial cells and 2.3 +/- 0.3 pA/pF (n = 16) in subendocardial cells. When cells from explanted failing and nonfailing donor hearts were compared, Ito was not different in subepicardial cells; however, it was larger in subendocardial cells from nonfailing hearts. The potential of half-maximal activation (V0.5) was more positive in subendocardial cells (+25.6 +/- 3.5 mV, n = 15) than in subepicardial cells (+9.2 +/- 1.8 mV, n = 28). There was no difference in V0.5 between cells from failing and nonfailing hearts. Ito inactivation was similar in all cell types and independent of membrane depolarization (time constant [tau] = approximately 60 milliseconds at 22 degrees C). The potential of half-maximal steady-state inactivation was similar in all cell types. Recovery from inactivation of Ito was fast in subepicardial cells at -100 mV (tau = 24 +/- 4 milliseconds, n = 6), exceeding control values transiently (overshoot), and slow at -40 mV without overshoot (tau = 638 +/- 91 milliseconds, n = 6). In subendocardial cells, Ito recovered at -100 mV with a fast phase (tau = 25 milliseconds) and a slow phase (tau = 328 milliseconds), and recovery was not complete after 6 seconds at -100 mV. In conclusion, regional differences in Ito between subepicardial and subendocardial cells may have clinical implications with respect to rhythmic disturbance during heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 312 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3