Affiliation:
1. University of Vermont, Department of Pharmacology 05405.
Abstract
The effects of electrical field stimulation (EFS) of rabbit middle cerebral arteries were examined using wire-mounted arterial segments. EFS of segments maintained at rest tension caused a tetrodotoxin-sensitive sympathetic contraction. In agonist-contracted segments maintained at approximately 60% of tissue maximum force, EFS caused a relaxation in two thirds of the preparations. Maximum response (mean +/- SEM) was 33 +/- 3.5% of maximal relaxation. The EFS relaxation was tetrodotoxin-sensitive but was not blocked by either chronic surgical sympathectomy or exposure to guanethidine (5 microM). Electron microscopy of chromaffin-fixed arterial sections showed the presence of chromaffin-positive large and small vesicles. Within the same sheath of Schwann were also a smaller number of nerve profiles containing many small clear vesicles. Removal of the vascular endothelium or treatment with atropine (10 nM) eliminated the EFS relaxation in approximately 50% of the segments and reduced the response in another 35-40%; in the remainder, relaxation was unaffected. Combined data for endothelium removal and atropine treatment showed that each caused a significant (p less than 0.01) reduction in the EFS relaxation. Atropine also significantly reduced EFS relaxation in guanethidine-treated segments. There was no reduction in EFS relaxation after procedures that antagonized ATP- or substance P-mediated relaxations. These results indicate that EFS of precontracted rabbit middle cerebral artery causes a neurogenic nonadrenergic relaxation. The neuroeffector mechanism mediating this response has a predominantly cholinergic endothelium-dependent component as well as a noncholinergic endothelium-independent component.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献