Histamine induces K+, Ca2+, and Cl- currents in human vascular endothelial cells. Role of ionic currents in stimulation of nitric oxide biosynthesis.

Author:

Groschner K1,Graier W F1,Kukovetz W R1

Affiliation:

1. Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.

Abstract

The nature of the membrane currents mediating agonist-induced Ca2+ entry and enhanced nitric oxide (NO) production in endothelial cells is still unclear. Using both perforated-patch and conventional whole-cell clamp technique, we have studied the membrane response associated with histamine stimulation of human vascular endothelial cells. In perforated-patch experiments, the initial histamine (10 mumol/L)-induced current reversed close to the K+ equilibrium potential and was blocked by tetrabutylammonium ions (TBA, 10 mmol/L). In addition, a TBA-insensitive current that developed slowly in the presence of histamine was recorded. This delayed histamine-induced current reversed close to neutral potential and was inhibited by SK&F 96365 (25 mumol/L), a putative blocker of receptor-operated Ca2+ channels. Similar histamine effects were observed in conventional whole-cell experiments using pipette solutions with low Ca(2+)-buffering capacity. Strong buffering of intracellular free Ca2+ suppressed the initial, but not the delayed, current response. The delayed component of histamine-induced current was substantially inhibited by the Cl- channel blocker N-phenylanthranilic acid (NPA, 100 mumol/L), and an eightfold change in the Cl- gradient shifted the reversal potential of this current by 30 mV. In Cl(-)-free solutions, histamine induced an SK&F 96365-sensitive NPA-resistant current, which, according to reversal potential measurements in 20 mmol/L extracellular Ca2+, corresponded to a cation conductance with 13- to 25-fold selectivity for Ca2+ over K+. Both SK&F 96365 and TBA strongly suppressed histamine-induced rises in intracellular free Ca2+ and cellular cGMP levels, whereas NPA did not. Our results provide the first demonstration that three distinct ionic conductances contribute to the histamine-induced membrane response of endothelial cells. It is suggested that histamine induces a Cl- conductance that is apparently not involved in Ca2+ homeostasis and regulation of NO biosynthesis, while, in parallel, joint activation of a rapidly induced K+ permeability and a slowly developing cation permeability mediate Ca2+ entry and stimulation of endothelial NO production.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3