Affiliation:
1. Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
Abstract
Acetylcholine (ACh) elicits vasodilation by releasing a number of endothelium-derived relaxing factors (EDRFs). We used the isolated perfused hydronephrotic rat kidney to examine the characteristics of ACh-induced vasodilation of renal afferent arterioles during different types of underlying vasoconstriction. Basal arteriolar tone was increased by either elevating perfusion pressure to 180 mm Hg (myogenic), administering 0.3 mumol/L norepinephrine (NE), or elevating medium potassium concentration to 30 mmol/L (KCl). ACh (10 mumol/L) completely reversed myogenic and NE-induced vasoconstriction and reversed KCl-induced vasoconstriction by 80 +/- 5%. However, whereas ACh produced a sustained vasodilation during KCl- and NE-induced vasoconstriction, only a transient reversal of myogenic vasoconstriction was observed, and myogenic tone recovered within 5 to 10 minutes. ACh-induced vasodilation of arterioles preconstricted with KCl was markedly inhibited by either indomethacin (100 mumol/L) or nitro-L-arginine (100 mumol/L) and was completely abolished by pretreatment with both inhibitors. In contrast, indomethacin and nitro-L-arginine had no effect on the transient response to ACh observed during pressure-induced vasoconstriction. In vessels preconstricted with NE, nitro-L-arginine converted the normally sustained response to ACh to a transient vasodilation, which was refractory to both nitric oxide synthase and cyclooxygenase inhibition. Since this component was not observed during KCl-induced vasoconstriction, it may reflect the actions of an, as yet unidentified, endothelium-derived hyperpolarizing factor (EDHF). Our findings thus suggest that prostanoids, nitric oxide, and EDHF all contribute to ACh-induced renal afferent arteriolar vasodilation and that the relative contributions of these individual EDRFs depends on the nature of the underlying renal vascular tone.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献