Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture.

Author:

Eid H1,Larson D M1,Springhorn J P1,Attawia M A1,Nayak R C1,Smith T W1,Kelly R A1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Boston.

Abstract

Adult rat ventricular myocytes undergo a well-documented sequence of phenotypic changes during adaptation to primary culture. However, we observed that coculture of myocytes with a specific subset of nonmyocyte cardiac cells could slow and even reverse the process of adaptation. These nonmyocyte cells were isolated and identified by immunohistochemical and ultrastructural criteria as being of epicardial mesothelial origin. When added to long-term primary cultures of adult ventricular myocytes, epicardial mesothelial cells appeared to induce myofibrillar arrays that were more organized than those seen in noncocultured myocytes; these changes that occurred were concurrent with the appearance of large amplitude contractions and multicellular synchronous beating that was facilitated by gap junctions between myocytes and epicardial mesothelial cells. The changes in morphology and function were accompanied by a marked increase in beta-myosin heavy chain isoform transcription in cocultured myocytes, a return to the ratio of cardiac to skeletal alpha-actin expected in adult rat myocardium, and a much reduced expression of smooth muscle alpha-actin. These changes in myocyte phenotype and function appeared to require epicardial cell-myocyte contact, or close apposition, because media conditioned by epicardial mesothelial cells alone or in coculture had no effect. Thus, these rapid and reversible changes in myocyte ultrastructure, function, and gene expression may provide a useful in vitro model with which to study the mechanism responsible for regulating the plasticity of ventricular myocyte phenotype and the role of specific cell-cell interactions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3