Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide.

Author:

Kurose I1,Wolf R1,Grisham M B1,Granger D N1

Affiliation:

1. Department of Physiology, LSU Medical Center, Shreveport 71130-3932.

Abstract

Leukocyte-endothelial cell adhesion and an altered metabolism of endothelial cell-derived nitric oxide (NO) have been implicated in the microvascular dysfunction associated with ischemia/reperfusion (I/R). The objective of this study was to determine whether NO donors can attenuate the reperfusion-induced increase in venular albumin leakage via an effect on leukocyte-endothelial cell adhesion. Leukocyte adherence and emigration as well as albumin extravasation were monitored in single postcapillary venules in rat mesentery subjected to 20 minutes of ischemia followed by 30 minutes of reperfusion. This I/R protocol elicits significant leukocyte adherence and emigration as well as a profound albumin leakage response. Superfusion of the mesenteric microcirculation with the NO donors sodium nitroprusside, spermine-NO, and SIN1 significantly reduced the I/R-induced leukocyte adherence/emigration and albumin leakage in postcapillary venules, whereas neither spermine nor the NO synthase inhibitor NG-nitro-L-arginine methyl ester affected the I/R-induced responses. Platelet-leukocyte aggregation and mast cell degranulation were also observed in the postischemic mesentery, and the responses were also attenuated by the NO donors. Plasma nitrate/nitrite levels in the superior mesenteric vein were significantly reduced by I/R. The results of this study indicate that I/R-induced microvascular dysfunction (albumin leakage) is attenuated by NO and that the protective effect of NO donors may be related to their ability to reduce leukocyte-endothelial cell and leukocyte-platelet interactions and/or mast cell degranulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3