Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells.

Author:

Kohomoto O1,Levi A J1,Bridge J H1

Affiliation:

1. Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City 84112.

Abstract

Exchange-inhibitory peptide (XIP) can inhibit sodium-calcium exchange without inhibiting L-type calcium current (ICa). We therefore used this compound to test the hypothesis that reverse sodium-calcium exchange can trigger contraction in guinea pig ventricular myocytes. When cells were dialyzed with 20 mmol/L sodium, rapid blockade of ICa with nifedipine had little effect on cell shortening. However, if reverse exchange was inhibited by first dialyzing the cells with XIP, blockade of ICa largely inhibited cell shortening. In cells dialyzed with 10 mmol/L sodium, about 51% of the maximum cell shortening remained after ICa was blocked. When both ICa and reverse exchange were significantly inhibited with nifedipine and XIP, only 24% of the cell shortening remained; ie, 27% was XIP inhibitable. Cells dialyzed with solutions deficient in sodium exhibited contractions that were largely dependent on ICa (ie, not XIP inhibitable). If the sarcoplasmic reticulum (SR) was disabled with ryanodine and thapsigargin, reverse exchange could not cause contraction. We therefore conclude that with intact SR, reverse sodium-calcium exchange activates contraction by triggering calcium release from the SR in cells dialyzed with either 10 or 20 mmol/L sodium. A scrambled sequence of XIP, sXIP, caused no measurable effect on contraction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging Roles of Sodium/Calcium Exchangers in Cancer;Handbook of Cancer and Immunology;2024

2. Electrical and Structural Insights into Right Ventricular Outflow Tract Arrhythmogenesis;International Journal of Molecular Sciences;2023-07-22

3. Activation of reverse Na+-Ca2+ exchanger by skeletal Na+ channel isoform increases excitation-contraction coupling efficiency in rabbit cardiomyocytes;American Journal of Physiology-Heart and Circulatory Physiology;2021-02-01

4. Calcium Handling Defects and Cardiac Arrhythmia Syndromes;Frontiers in Pharmacology;2020-02-25

5. Na/Ca exchange and contraction of the heart;Journal of Molecular and Cellular Cardiology;2013-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3