Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels.

Author:

Loree H M1,Kamm R D1,Stringfellow R G1,Lee R T1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge.

Abstract

It is likely that factors other than stenosis severity predispose some atherosclerotic plaques to rupture. Because focal increases in circumferential stress may be an important mechanism of plaque rupture, we examined peak circumferential stress of atherosclerotic lesions by using finite element analysis based on idealized two-dimensional cross sections of diseased vessels similar to intravascular ultrasound images. The study was designed to test the hypothesis that subintimal plaque structural features such as thickness of the fibrous cap are more important factors in the distribution of stress in the plaque than stenosis severity. The analysis incorporated equilibrium biomechanical parameters from normal and diseased vessels and determined the stress distribution within the plaque at a mean luminal internal pressure of 110 mm Hg. With a constant luminal area reduction of 70%, maximum circumferential stress (sigma max) normalized to luminal pressure (sigma max/P) increased from 6.0 to 24.8 as the thickness of the lipid pool was increased from 38% to 54% of the plaque thickness because of the thinner fibrous cap over the lipid pool. When the lipid pool thickness was constant, increasing the stenosis severity from 70% to 91% by increasing the fibrous cap thickness decreased sigma max/P from 24.8 to 4.7. When no lipid pool was present and the stenosis severity was increased from 70% to 99%, sigma max/P decreased from 5.3 to 4.7. Thus, reducing the fibrous cap thickness dramatically increases peak circumferential stress in the plaque, whereas increasing the stenosis severity actually decreases peak stress in the plaque.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 582 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3