Intestinal Absorption of Sodium and Nitric OxideDependent Vasodilation Interact to Dominate Resting Vascular Resistance

Author:

Bohlen H. Glenn1,Lash Julia M.1

Affiliation:

1. From the Department of Physiology and Biophysics, Indiana University Medical School, Indianapolis.

Abstract

Abstract The villi of the small intestine maintain a hypertonic interstitium at all times, and the submucosal glands constantly secrete ions and accompanying water into the lumen. Generation of the 400- to 600-mOsm interstitial fluid in the villus and secretion by glands may require a large expenditure of energy and, consequently, have major effects on intestinal vascular regulation to supply oxygen and nutrients. Blood flow and oxygen consumption were measured in the ileum of anesthetized rats during natural resting conditions with physiological sodium chloride in the bathing fluid and during isosmotic replacement of sodium chloride with mannitol. Microvascular pressures and blood flow were used to determine the changes in resistance of the major arterioles and the terminal vasculature. When mannitol replaced sodium chloride in contact with the villi, intestinal blood flow decreased to 58.6±2.8% of control, and oxygen consumption was 54.2±3.4% of control. Resistance of the major arterioles increased 101.7±9.9%, and that of the terminal vasculature increased 40.4±6.2%. The increased resistance appeared to be caused by suppression of a nitric oxide mechanism. Local application of 10 −4 mol/L N G -nitro- l -arginine methyl ester caused about the same reduction in flow and increases in regional vascular resistance as during replacement of sodium but did not alter the oxygen consumption. These data indicate that about half of the intestinal metabolic rate during natural resting conditions is devoted to sodium secretion/absorption. Large resistance vessels are dilated to maintain a high blood flow through release of nitric oxide. We propose that dilation of the terminal vasculature in the metabolically active tissues increased flow velocity sufficiently in the major resistance vessels to cause a flow-mediated release of nitric oxide.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference33 articles.

1. Tissue osmolality in intestinal villi of four mammalsin vivoandin vitro

2. Countercurrent Multiplication of Sodium in Intestinal Villi during Absorption of Sodium Chloride

3. Evidence for the existence of a countercurrent exchanger in the small intestine in man

4. Bohlen HG, Lash JM. Resting oxygenation of rat and rabbit intestine: arteriolar and capillary contributions. Am J Physiol. 1995;269:H1342-H1348.

5. Dregelid E, Haukaas S, Amundsen S, Eide GE, Søreide O, Lekven J, Svanes K. Microsphere method in measurement of blood flow to wall layers of small intestine. Am J Physiol. 1986;250:G670-G678.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3