Mechanism of preconditioning. Ionic alterations.

Author:

Steenbergen C1,Perlman M E1,London R E1,Murphy E1

Affiliation:

1. Department of Pathology, Duke University Medical Center, Durham, NC 27710.

Abstract

The mechanism by which preconditioning (brief intermittent periods of ischemia and reflow) improves recovery of function and reduces enzyme release after a subsequent 30-minute period of ischemia was investigated in perfused rat hearts. Specifically, it was hypothesized that ischemia after preconditioning would result in a decreased production of H+ and therefore a smaller rise in [Na+]i and [Ca2+]i via Na(+)-H+ and Na(+)-Ca2+ exchange. To test this hypothesis we measured pHi, [Na+]i, [Ca2+]i, and cell high-energy phosphates during ischemia and reflow, and we correlated this with recovery of contractile function and release of creatine kinase during reflow. 31P nuclear magnetic resonance (NMR) was used to measure pHi and cell phosphates. [Na+]i was measured by 23Na NMR using the shift reagent thulium 1,4,7,10-tetraazacyclododecane-N,N,'N",N"'-tetramethylenephosph onate to distinguish intracellular from extracellular sodium. [Ca2+]i was measured by 19F NMR using hearts loaded with 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid, termed 5F-BAPTA. Basal time-averaged levels of pHi, [Na+]i, and [Ca2+]i were 7.07 +/- 0.08, 9.4 +/- 0.8 mM, and 715 +/- 31 nM, respectively. After 30 minutes of ischemia, in preconditioned hearts, pHi was 6.5 +/- 0.06, [Na+]i was 2.09 +/- 4.4 mM, [Ca2+]i was 2.1 +/- 0.4 microM, and ATP was negligible. In untreated hearts, after 30 minutes of ischemia, pHi was 6.3 +/- 0.08, [Na+]i was 26.7 +/- 3.8 mM, [Ca2+]i was 3.2 +/- 0.6 microM, and ATP was undetectable. During reperfusion after 30 minutes of ischemia, preconditioned hearts had significantly better recovery of contractile function than untreated hearts (71 +/- 9% versus 36 +/- 8% initial left ventricular developed pressure), and after 60 minutes of ischemia, preconditioned hearts had significantly less release of the intracellular enzyme creatine kinase (102 +/- 12 versus 164 +/- 17 IU/g dry wt). We also found that unpreconditioned hearts arrested with 16 mM MgCl2 (to inhibit calcium entry via calcium channels and Na(+)-Ca2+ exchange) before 30 minutes of ischemia recover function on reflow to the same extent as preconditioned hearts with or without magnesium arrest. Thus, preconditioning has no additional benefit in addition to magnesium arrest. In addition, in hearts that received 16 mM MgCl2 just before the 30-minute period of ischemia, preconditioning had no effect on the rise in [Ca2+]i during the 30-minute period of ischemia. These data support the hypothesis that preconditioning attenuates the increase in [Ca2+]i, [Na+]i, and [H+]i during ischemia, most likely because of reduced stimulation of Na(+)-H+ and Na(+)-Ca2+ exchange.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3