Differential Expression of Voltage-Gated K + Channel Subunits in Adult Rat Heart

Author:

Barry Dianne M.1,Trimmer James S.1,Merlie John P.1,Nerbonne Jeanne M.1

Affiliation:

1. From the Department of Molecular Biology and Pharmacology (D.M.B., J.P.M., J.M.N.), Washington University School of Medicine, St Louis, Mo, and the Department of Biochemistry and Cell Biology (J.S.T.), State University of New York at Stonybrook.

Abstract

Abstract Polyclonal antibodies against each of the K + channel subunits (Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2) shown previously to be expressed in adult rat heart at the mRNA level were used to examine the distributions of these K + channel subunits in adult rat atrial and ventricular membranes. Immunohistochemistry on isolated adult rat ventricular myocytes revealed strong labeling with the anti-Kv4.2 and anti-Kv1.2 antibodies. Although somewhat weaker (than with anti-Kv1.2 or anti-Kv4.2), positive staining was also observed with the anti-Kv1.5 and anti-Kv2.1 antibodies. Ventricular myocytes exposed to the anti-Kv1.4 antibody, in contrast, did not appear significantly different from background. Qualitatively similar results were obtained on isolated adult rat atrial myocytes. Western blots of atrial and ventricular membrane proteins confirmed the presence of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 and revealed differences in the relative abundances of these subunits in the two membrane preparations. Kv4.2, for example, is more abundant in ventricular than in atrial membranes, whereas Kv1.2 and Kv2.1 are higher in atrial membranes; Kv1.5 levels are comparable in the two preparations. In contrast to these results, nothing was detected in Western blots of atrial or ventricular membrane proteins with the anti-Kv1.4 antibody at concentrations that revealed intense labeling of a 97-kD protein in adult rat brain membranes. A very faint band was detected at 97 kD in the atrial and ventricular preparations when the anti-Kv1.4 antibody was used at a 5- to 10-fold higher concentration. The simplest interpretation of these results is that Kv1.4 is not an abundant protein in adult rat atrial or ventricular myocytes. Therefore, it seems unlikely that Kv1.4 plays an important role in the formation of functional depolarization-activated K + channels in these cells. The relation(s) between the (other four) K + channel subunits and the depolarization-activated K + channels identified electrophysiologically in adult rat atrial and ventricular myocytes is discussed in the present study.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference37 articles.

1. Cohen IS Datyner NB Gintant GA Kline RP. Time-dependent outward currents in the heart. In: Fozzard HA Jennings RB Haber E Katz AM Morgan HE eds. The Heart and Cardiovascular System . New York NY: Raven Press Publishers; 1986:637-670.

2. Potassium currents in cardiac cells

3. Potassium Channels in the Heart: Electrophysiology and Pharmacological Regulation

Cited by 234 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3