Different functions of the platelet-derived growth factor-alpha and -beta receptors for the migration and proliferation of cultured baboon smooth muscle cells.

Author:

Koyama N1,Hart C E1,Clowes A W1

Affiliation:

1. Department of Surgery, University of Washington, Seattle 98195.

Abstract

Migration of medial smooth muscle cells (SMCs) and their proliferation in the intima contribute to thickening of injured and atherosclerotic vessels. These events have been proposed to be regulated in part by platelet-derived growth factor (PDGF). Two separate PDGF receptors have been identified, PDGF-R alpha and PDGF-R beta. To study the functions of PDGF-R alpha and PDGF-R beta in vascular SMCs, neutralizing monoclonal antibodies (mAbs) specific for each of the two receptors were used. These antibodies allowed us to evaluate the role of each receptor for PDGF-induced proliferation and migration of cultured baboon SMCs. Both PDGF-AA and PDGF-BB stimulated SMC growth, with PDGF-BB being more potent than PDGF-AA. Studies with anti-PDGF-R alpha and anti-PDGF-R beta mAbs revealed that both PDGF receptors promoted the stimulatory signals for proliferation. In contrast, PDGF-BB stimulated SMC migration, whereas PDGF-AA had no stimulatory activity on its own. Additionally, PDGF-AA was able to suppress migration induced by PDGF-BB or fibronectin in modified Boyden's chamber assay. When PDGF-BB-induced migration was separated into chemotactic and chemokinetic activities, only the chemotactic component was inhibited by PDGF-AA. The suppression of SMC migration by PDGF-AA was eliminated by anti-PDGF-R alpha mAb. In addition, PDGF-BB, in the presence of anti-PDGF-R beta, bound only to PDGF-R alpha and caused suppression of SMC migration induced by fibronectin. These results suggest that when activated by ligand binding, both PDGF-R alpha and PDGF-R beta stimulate proliferation. In contrast, only activation of PDGF-R beta stimulates migration, whereas ligand binding to PDGF-R alpha leads to inhibition of cell migration. These observations provide support for the conclusion that PDGF-R alpha and PDGF-R beta may play different roles in SMC function and may be involved in different regulatory mechanisms during vascular remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3