Effects of Rapamycin on Ryanodine Receptor/Ca 2+ -Release Channels From Cardiac Muscle

Author:

Kaftan Edward1,Marks Andrew R.1,Ehrlich Barbara E.1

Affiliation:

1. From the Departments of Physiology and Medicine (E.K., B.E.E.), University of Connecticut, Farmington, and the Department of Medicine and Brookdale Center for Molecular Biology (A.R.M.), Mount Sinai School of Medicine, New York, NY.

Abstract

Abstract Ryanodine receptors (RyRs) are intracellular channels that regulate the release of Ca 2+ from the endoplasmic reticulum of many cell types. The RyRs are physically associated with FK506-binding proteins (FKBPs); immunophilins, with cis - trans peptidyl-prolyl isomerase activity. FKBP12 copurifies with RyR1 (skeletal isoform) and modulates its gating. A different form of FKBP with a slightly higher molecular weight copurifies with RyR2 (cardiac isoform). Previous studies have demonstrated that FKBP stabilizes gating of the skeletal Ca 2+ -release channel. In the present study, we measured the activity of cardiac RyRs incorporated into planar lipid bilayers to show that rapamycin, a drug that inhibits the prolyl isomerase activity of FKBP and dissociates FKBP from the RyR, increases the open probability and reduces the current amplitude of cardiac muscle Ca 2+ -release channels. These experiments show for the first time that submicromolar concentrations of rapamycin can alter channel function. Our results provide support for the hypotheses that FKBP functionally associates with the RyR and that the immunosuppressant drug, rapamycin, alters the function of both cardiac and skeletal muscle isoforms of the Ca 2+ -release channel. Our findings suggest that FKBP-dependent modulation of channel function may be generally applicable to all members of the intracellular Ca 2+ -release channel family and that FKBPs may play important regulatory roles in many cell processes, ranging from long-term depression in neurons to contractility in cardiomyocytes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3