Membrane-bound nucleoside diphosphate kinase activity in atrial cells of frog, guinea pig, and human.

Author:

Heidbüchel H1,Callewaert G1,Vereecke J1,Carmeliet E1

Affiliation:

1. Laboratory of Physiology, University of Leuven, Campus Gasthuisberg, Belgium.

Abstract

Muscarinic K+ channels in inside-out patches of atrial cells from guinea pig or rabbit can be activated by Mg(2+)-ATP in the absence of acetylcholine and GTP or GDP. The ATP-dependent activation involves a phosphorylation and is postulated to be due to the association of a membrane-bound nucleoside diphosphate kinase (NDPK) with the G protein GK: direct phosphorylation of the GK-bound GDP into GTP, catalyzed by NDPK, would result in activation of the G protein and, hence, activation of the channels. The aim of this study was to identify the presence of NDPK activity in atrial membranes by investigating the phosphate transfer between tritium-labeled nucleotides. We show that frog, guinea pig, and human atrial membranes contain a substantial NDPK activity since they catalyze the conversion from [3H]GDP+nucleoside triphosphate (NTP or NTP gamma S) to [3H]GTP (or [3H]GTP gamma S), from [3H]ADP+NTP to [3H]ATP, and from [3H]GTP+nucleoside diphosphate (NDP) to [3H]GDP. The phosphate transfer rates for the [3H]GDP+ATP to [3H]GTP conversion are 1.8, 0.5, and 2.4 mumol inorganic phosphate formation/mg per 10 minutes at 37 degrees C in frog, guinea pig, and human, respectively. The order of substrate efficiency for different NTPs was ATP greater than ITP approximately equal to GTP greater than UTP greater than CTP, which parallels the efficiency of these nucleotides in their activation of the muscarinic K+ channels. Addition of other nucleotides blocked the transphosphorylation reaction, indicating that the NTP-NDP conversion mechanism is aspecific, as is expected for an NDPK-catalyzed reaction. In conclusion, the data support the concept of NDPK involvement in the atrial muscarinic signal transduction cascade.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3