Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro.

Author:

Koller A1,Sun D1,Kaley G1

Affiliation:

1. Department of Physiology, New York Medical College, Valhalla 10595.

Abstract

We have studied the effect of changes in shear stress on diameter of isolated arterioles of rat cremaster muscle. The steady-state active diameter of arterioles at a constant perfusion pressure (60 mm Hg) was 80 +/- 1.2 microns. The vessels' passive diameter (Ca(2+)-free solution) was 156 +/- 1.8 microns. Changes in shear stress were induced either by an increase in flow (velocity) or by an increase in viscosity of the perfusion solution. At a constant perfusion pressure, the stepwise increase in perfusion flow (0-80 microliters/min in 10-microliters/min steps) elicited, with a delay of approximately 20 seconds, a gradual increase in diameter up to 46%. At a constant 20-microliters/min flow rate, increases in viscosity of the perfusate (2%, 4%, and 6% dextran [molecular weight, 77,800]) caused a gradual vasodilation up to 22%. Varying flow and viscosity of the perfusate simultaneously resulted in an upward shift of the flow-diameter curve. Both flow- and viscosity-induced dilations were eliminated by the removal of the endothelium of arterioles (by air) or were inhibited by indomethacin (10(-5) M). The efficacy and specificity of these inhibitory treatments were assessed with vasoactive agents whose action, with regard to endothelial mediation, has been determined previously. The arteriolar dilation maintained calculated wall shear stress close to control values during increases in flow and/or viscosity of the perfusate, but when the dilation was inhibited by removal of the endothelium or by indomethacin, wall shear stress increased significantly in a cumulative manner.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 298 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3