Affiliation:
1. Center for Bioengineering, University of Washington, Seattle 98195.
Abstract
Spontaneous oscillations observed in various heart muscle preparations are widely thought to be triggered by spontaneous release of Ca2+ from the sarcoplasmic reticulum (SR). Here, we report undamped propagated oscillations that occur in the absence of SR. In single cardiac myofibrils treated with Triton X-100 to remove SR and held isometrically, partial activation initiated periodic fluctuations of sarcomere length persisting up to 1 hour. Oscillation characteristics could be readily quantitated by virtue of the small size of the preparation. In an individual sarcomere, the oscillation cycle generally consisted of a slow shortening phase, followed by a phase of rapid lengthening. Oscillations usually propagated along the myofibril--frequently along the entire specimen--in a wavelike fashion (average velocity, 12.3 microns/s at 10 degrees C; Q10, approximately 1.3). The oscillation period was 2.30 and 1.72 seconds at 10 degrees and 20 degrees C, respectively, and was insensitive to stretch. The average oscillation amplitude, which was temperature independent, decreased with stretch from more than 20% of the mean sarcomere length at lengths below 2 microns to zero beyond a sarcomere length of 3 microns. Stiffening of the Z line by labeling with anti-alpha-actinin resulted in a dose-dependent decrease of oscillation amplitude, while the period was not affected. Tension oscillations could not be detected in single myofibrils but were frequently detectable in myofibril doublets, where the oscillation magnitude (approximately 1 microgram) was above the noise floor. Addition of 10 mumol/L ryanodine to the activating solution did not alter oscillation characteristics, as expected, since the oscillations are unrelated to SR calcium release. On the basis of our results, we consider a mechanism for the oscillations in which a length dependence of myofibrillar Ca2+ sensitivity and a dynamic Z-line structure are essential.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献