Myosin Heavy Chain Expression in Contracting Myocytes Isolated During Embryonic Stem Cell Cardiogenesis

Author:

Metzger Joseph M.1,Lin Wan-In1,Johnston Ross A.1,Westfall Margaret V.1,Samuelson Linda C.1

Affiliation:

1. From the Department of Physiology, School of Medicine, University of Michigan, Ann Arbor.

Abstract

Abstract Mouse embryonic stem (ES) cells are totipotent cells derived from the inner cell mass of the preimplantation blastocyst and are capable of differentiating in vitro into cardiac myocytes. Attached cultures of differentiating ES cells were established to document the timing of contractile development by microscopic observation and to permit the microdissection of cardiac myocytes from culture. The onset of spontaneous contraction varied markedly in differentiation culture, with contraction being maintained on average for 9 days (range, 1 to 75 days). Indirect immunofluorescence microscopy showed that myosin expression was localized to the contracting cardiac myocytes in culture. Myosin heavy chain (MHC) isoform expression in microdissected ES cell–derived cardiac myocytes was determined by means of sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The distribution of MHC isoform expression in isolated ES cell cardiac myocytes was as follows: 27% expressed the β-MHC isoform, 33% expressed both the α- and β-MHC isoforms, and 40% expressed the α-MHC isoform. MHC phenotype was correlated to the duration of continuous contractile activity of the myocytes. Myocytes that had just initiated spontaneous contractile activity predominantly expressed the β-MHC (average days of contraction before isolation, 2.5±0.7). The α-MHC isoform was detected after more prolonged contractile activity in vitro (1 to 5 weeks). A strong correlation was obtained between MHC phenotype and days of contraction of the cardiac myocyte preparations isolated from ES cell cultures ( r =.93). The apparent transition in MHC isoform expression during ES cell differentiation parallels the β- to α-MHC isoform transition characteristic of murine cardiac development in vivo. These findings are evidence that ES cell cardiac myocyte differentiation follows the normal developmental program of murine cardiogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3