Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy.

Author:

Lipp P1,Niggli E1

Affiliation:

1. Department of Physiology, University of Bern, Switzerland.

Abstract

It is well established that in heart muscle the influx of Ca2+ through Ca2+ channels during the action potential is the main trigger for Ca2+ release from the sarcoplasmic reticulum (SR), but intact cardiac tissue and single myocytes are also known to exhibit spontaneous Ca2+ release from the SR under a variety of circumstances. Although conditions favoring spontaneous activity have been examined extensively, mechanisms modulating or regulating spontaneous as well as triggered Ca2+ release are still largely unknown. Using the high spatial and temporal resolution of laser-scanning confocal microscopy, we investigated subcellular aspects of spontaneous and triggered Ca2+ release in isolated rat neonatal myocytes loaded with the Ca(2+)-sensitive fluorescent dye fluo 3. Three distinct patterns of spontaneous Ca2+ release were identified: (1) a homogeneous Ca2+ release, presumably corresponding to Ca2+ release during a spontaneous action potential, (2) a focal or spatially restricted Ca2+ release with no or only limited subcellular propagation, and (3) a Ca2+ release propagating as a wave throughout the entire cell. Pharmacologic tools that interfere with the SR revealed that all release types were critically dependent on the Ca2+ release and uptake function of the SR. From our results we conclude that the probability, extent, and pattern of Ca2+ release are modulated on the subcellular level. The observed spectrum of release patterns can be explained by a space- and time-dependent variability in the positive feedback of the Ca(2+)-induced Ca(2+)-release mechanism within an individual myocyte. Presumably, this variability depends on the existence of subcellular functional elements of the SR. The actual degree of positive feedback may be modulated locally by the Ca(2+)-loading state of each SR element.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3