Affiliation:
1. Neurophysiology Section, Neurology Department, Baylor College of Medicine, Houston, Tex. 77030.
Abstract
Neomammalian and paleomammalian (limbic) brain structures control different behaviors and the autonomic support specific to each. Both neural systems are involved in cardiovascular disorders. Our previous studies showed that bilateral cryoblockade of a neomammalian structure (the frontal lobes) reduces blood pressure elevations in experimental hypertension and prevents lethal arrhythmogenesis in experimental myocardial infarction. Other studies showed that bilateral lesions in a paleomammalian structure (amygdala) also reduce the blood pressure elevations. Thus, we hypothesized that cryoblockade of the amygdala would prevent lethal arrhythmogenesis. We found that cooling of cryoprobes implanted bilaterally in the amygdala prevented ventricular fibrillation in five of eight pigs during a 20-minute period of reversible myocardial ischemia, whereas cryoblockade in structures surrounding the amygdala (five pigs), unilateral cryoblockade in the amygdala (two pigs), or sham operations (three pigs) did not prevent ventricular fibrillation (p less than 0.003). In two of the five pigs with amygdaloid blockade, the cooling was reversed at 20 minutes while the coronary occlusion continued (24 hours), and still ventricular fibrillation did not occur. In all other cases, ischemia was reversed at 20 minutes so that the heart could recover; this enabled histochemical documentation that the heart was normal at the time(s) ischemia was induced, and it allowed within-subject control experiments. Amygdaloid cryoblockade produced a small but significant increase in heart rate (10 beats per minute) without a change in blood pressure. We conclude that the paleomammalian brain, like its neomammalian counterpart, mediates brain effects on fatal arrhythmogenesis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献