Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake.

Author:

Kaplan P1,Hendrikx M1,Mattheussen M1,Mubagwa K1,Flameng W1

Affiliation:

1. Centre for Experimental Surgery and Anaesthesiology, University of Leuven, Belgium.

Abstract

To investigate the mechanism underlying postischemic cardiac dysfunction (myocardial stunning), contractility and adenine nucleotide metabolism were studied in three groups of isolated perfused rabbit hearts (control, ischemic, and reperfused), whereas Ca2+ uptake by the sarcoplasmic reticulum (SR) was measured in homogenates obtained from them. The hearts were Langendorff-perfused under constant pressure with Krebs-Henseleit solution at 37 degrees C. Global normothermic ischemia was produced by closing the perfusion line. In the reperfused group, after 15 minutes of ischemia, Krebs-Henseleit solution was perfused for 10 minutes. Developed left ventricular pressure (control, 104 +/- 6.3 mm Hg) and left ventricular dP/dt (2,063 +/- 256.6 mm Hg.sec-1) were significantly decreased in reperfused hearts (left ventricular pressure, 78 +/- 5.9 mm Hg; left ventricular dP/dt, 1,339 +/- 216.3 mm Hg.sec-1). Myocardial ATP content (control, 13.6 +/- 0.98 mumol/g dry wt) decreased during ischemia (4.5 +/- 1.23 mumol/g) but was restored to control level on reperfusion (11.8 +/- 0.68 mumol/g). Maximum velocity of Ca2+ uptake by the SR (Vmax) (control, 49.3 +/- 2.54 nmol.min-1 x mg-1) was significantly depressed by ischemia (36.3 +/- 1.94 nmol.min-1 x mg-1) but was restored to the control value after a 10-minute reperfusion (45.3 +/- 0.79 nmol.min-1 x mg-1). Apparent dissociation constant KCa and the Hill coefficient for Ca2+ uptake were not different between control, ischemia, and reperfusion. To test for the possible role of the SR Ca(2+)-release channel in the effect of ischemia and reperfusion, we measured Ca2+ uptake after incubation of homogenates with 610 microM ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3