Affiliation:
1. the Max-Planck-Institut für Physiologische und Klinische Forschung, Bad Nauheim, Germany.
Abstract
Flk-1, a high-affinity signaling receptor for vascular endothelial growth factor (VEGF), is strongly and specifically expressed on endothelial cells during embryonic development of the vascular system and during tumor angiogenesis. Disruption of Flk-1 gene function has recently been shown to prevent completely endothelial cell differentiation during murine embryonic development. To gain insights into the mechanisms that regulate the endothelium-specific Flk-1 expression, we have isolated the 5′-flanking region of the murine Flk-1 gene. RNase protection and primer extension analyses revealed a single transcriptional start site located 299 bp upstream from the translational start site in an initiator-like pyrimidine-rich sequence. The 5′-flanking region is rich in GC residues and lacks a typical TATA or CAAT box. A luciferase reporter construct containing a fragment from nucleotides −1900 to +299 showed strong endothelium-specific activity in transfected bovine aortic endothelial cells. Deletion analyses revealed that endothelium-specific Flk-1 expression is stimulated by the 5′-untranslated region of the first exon, which contains an activating element between nucleotides +137 and +299. In addition, two endothelium-specific negative regulatory elements were identified between nucleotides −4100 and −623. Two strong general activating elements were present in the region between nucleotides −96 and −37, which contains one potential NFκB and three potential AP-2 binding sites. This study shows that Flk-1 expression in endothelial cells is mainly regulated by an endothelium-specific activating element in the long 5′-untranslated region of the first exon and by negative regulatory elements located further upstream.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献