Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress.

Author:

Malek A M1,Jackman R1,Rosenberg R D1,Izumo S1

Affiliation:

1. Harvard Medical School-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Boston.

Abstract

The vascular endothelium, by virtue of its position at the interface between blood and the vessel wall, is known to play a critical role in the control of thrombosis and fibrinolysis. Thrombomodulin (TM) is a surface receptor that binds thrombin and is a potent activator of the protein C anticoagulant pathway. Although TM expression is known to be regulated by various cytokines, little is known about its response to ever-present biomechanical stimuli. We have explored the role of fluid shear stress, imparted on the luminal surface of the endothelial cell as a result of blood flow, on the expression of TM mRNA and protein in both bovine aortic endothelial (BAE) and bovine smooth muscle (BSM) cells in an in vitro system. We report in the present study that TM expression is regulated by flow. Subjecting BAE cells to fluid shear stress in the physiological range of magnitude of 15 (moderate shear stress) and 36 (elevated shear stress) dynes/cm2 resulted in a mild transient increase followed by a significant decrease in TM mRNA to 37% and 16% of its resting level, respectively, by 9 hours after the onset of flow. In contrast, shear stress at the low magnitude of 4 dynes/cm2 did not affect TM mRNA levels. The sensitivity of TM mRNA expression by flow was found to be specific to endothelium, since it was not observed in BSM cells exposed to steady laminar shear stress of 15 dynes/cm2. Furthermore, unlike BAE cells, BSM cells did not exhibit altered cell shape nor align in the direction of flow after 24 hours of shear stress at 15 dynes/cm2.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanobiology;Coronary Circulation;2024

2. Functional regeneration at the blood-biomaterial interface;Advanced Drug Delivery Reviews;2023-10

3. Endothelial mechanobiology in atherosclerosis;Cardiovascular Research;2023-05-10

4. Vascular mechanotransduction;Physiological Reviews;2023-04-01

5. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells;Frontiers in Cell and Developmental Biology;2022-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3