Potassium rectifier currents differ in myocytes of endocardial and epicardial origin.

Author:

Furukawa T1,Kimura S1,Furukawa N1,Bassett A L1,Myerburg R J1

Affiliation:

1. Department of Medicine, University of Miami School of Medicine, Fla.

Abstract

Whole-cell voltage-clamp experiments and single-channel current recordings in cell-attached patch mode were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to compare the characteristics of inward rectifier K+ current (IK1) and delayed rectifier K+ current (IK) between endocardial and epicardial cells and to test the hypothesis that the differential characteristics of IK1 and/or IK are responsible for the differences in action potential configuration between the two cell types. IK1 in endocardial cells displayed a distinct N-shaped current-voltage (I-V) relation, with a prominent outward current at potentials between -80 and -30 mV. In epicardial cells, an outward current region was much smaller, and the I-V relation demonstrated a blunted N-shaped I-V relation. In single-channel current recordings in cell-attached patch mode, neither unitary current amplitude of IK1 nor probability of channel opening was different between endocardial and epicardial cells, suggesting that the difference in the number of functional channels might be responsible for the differential IK1 I-V relations. The characteristics of IK also differed between endocardial and epicardial cells. The time course of growth of tail current of IK (IK,tail) (activation of IK) was significantly enhanced and that of IK,tail deactivation was delayed in epicardial cells compared with endocardial cells. The time constant of the slow component of IK activation at +20 mV was 3,950 +/- 787 msec in endocardial cells and 2,746 +/- 689 msec in epicardial cells (p less than 0.05); the corresponding values for IK deactivation at -50 mV were 1,041 +/- 387 msec and 1,959 +/- 551 msec, respectively (p less than 0.01). The voltage dependence of steady-state activation of IK,tail was similar between endocardial and epicardial cells, suggesting that the probability of channel opening at any potential was not different in the two cell types. The amplitude and density of fully activated IK (IK,full) were significantly greater in epicardial cells than in endocardial cells. At repolarization to -20 mV, IK,full amplitude was 452 +/- 113 pA in endocardial cells and 578 +/- 135 pA in epicardial cells (p less than 0.05), and the corresponding values for IK,full density were 2.86 +/- 0.73 and 4.21 +/- 0.83 microA/cm2, respectively (p less than 0.05). A nonstationary fluctuation analysis revealed that the amplitude of IK unitary current was similar between endocardial and epicardial cells (0.23 +/- 0.07 versus 0.22 +/- 0.03 pA, p = NS).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3