Shear Stress Modulates Expression of Cu/Zn Superoxide Dismutase in Human Aortic Endothelial Cells

Author:

Inoue Nobutaka1,Ramasamy Santhini1,Fukai Tohru1,Nerem Robert M.1,Harrison David G.1

Affiliation:

1. the Department of Medicine (N.I., S.R., T.F., D.G.H.), Emory University School of Medicine; Veterans Administration Hospital (D.G.H.); and the Biomechanics Laboratory (R.M.N.), School of Mechanical Engineering, Georgia Institute of Technology, Atlanta.

Abstract

A major determinant of the level of cellular superoxide anion (O 2 −• ) is the dismutation of O 2 −• to hydrogen peroxide by the enzyme superoxide dismutase (SOD). Three forms of SOD exist, but in endothelial cells, the major form outside of the mitochondria is the cytosolic copper/zinc-containing superoxide dismutase (Cu/Zn SOD). Since fluid shear stress is an important determinant of the function and structure of endothelial cells in vivo, we examined the effect of laminar shear stress on the expression of Cu/Zn SOD in cultured human aortic endothelial cells. Laminar shear stress of 0.6 to 15 dyne/cm 2 increased Cu/Zn SOD mRNA in a time- and dose-dependent manner in human aortic endothelial cells. Shear stress also increased both Cu/Zn SOD protein content and the enzyme activity. Nuclear run-on assays showed that nuclei from human aortic endothelial cells exposed to laminar shear stress had a 1.6-fold greater transcriptional activity of the Cu/Zn SOD gene compared with cells not exposed to shear, indicating that an increase in Cu/Zn SOD mRNA induced by laminar shear stress is at least in part mediated by increased transcription. In contrast, shear stress had no effect on Cu/Zn SOD mRNA levels in human aortic smooth muscle cells. These findings show that physiological levels of shear stress increase expression of Cu/Zn SOD in the endothelium. This adaptation to shear stress might augment the effect of locally produced NO and thereby promote the antiatherogenic and anti-inflammatory properties of the endothelial cell.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 251 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3