Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy.

Author:

Brillantes A M1,Allen P1,Takahashi T1,Izumo S1,Marks A R1

Affiliation:

1. Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029.

Abstract

The molecular basis for the systolic and diastolic dysfunction characteristic of end-stage heart failure in humans remains poorly understood. It has been proposed that both abnormal calcium handling and defects in the contractile apparatus may contribute to the myocardial dysfunction. Two channels, the calcium release channel (CRC) or ryanodine receptor of the sarcoplasmic reticulum (SR), and the slow calcium channel or dihydropyridine receptor (DHPR) of the transverse tubule, play key roles in regulating intracellular calcium concentration and in excitation-contraction (E-C) coupling in the heart. The DHPR serves as the voltage sensor and plasma membrane calcium channel resulting in activation of the CRC during E-C coupling in heart muscle. In this study, we investigated the levels of CRC expression in several forms of end-stage heart failure in humans. A cardiac CRC cDNA was cloned from rabbit and used as a probe for Northern blot analyses to determine mRNA levels in the left ventricles of normal (n = 4) and cardiomyopathic (n = 34) human hearts from patients undergoing cardiac transplantation. Compared with normal patients, patients with ischemic cardiomyopathy (n = 18) showed a 28% decrease in CRC mRNA levels (p less than 0.025) and patients with idiopathic dilated cardiomyopathy (n = 14) a nonsignificant 12% increase. In these same hearts, alpha-actin levels were unchanged in end-stage heart failure, as has been previously reported. This is the first report indicating that the expression of the CRC mRNA is abnormal in end-stage human heart failure.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3