Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle.

Author:

Yan G X1,Kléber A G1

Affiliation:

1. Department of Physiology, University of Bern, Switzerland.

Abstract

The extracellular pH (pHo) and intracellular pH (pHi) were simultaneously measured with H(+)-sensitive microelectrodes in the rabbit papillary muscle during normal arterial perfusion and no-flow ischemia. The preparation was kept in an artificial gaseous atmosphere (N2 and CO2 during ischemia) without a surrounding fluid layer. Cylindrical muscles of small diameters (less than 1.0 mm) were selected to prevent major diffusion gradients of CO2 within the muscle cylinder during ischemia. In normal perfusion with CO2/HCO3(-)-buffered blood at PCO2 of 35 mm Hg, pHi was 7.03 +/- 0.03. During early ischemia, extracellular acidification was much more prominent than intracellular acidification. Consequently, the transmembrane pH gradient reversed (pHo less than pHi) at approximately 8 minutes. At 14 minutes of ischemia, pHo was 6.64 and pHi was 6.93. A moderate increase in PCO2 from 35 to 67 mm Hg before ischemia enhanced intracellular acidification in ischemia. Simulation of CO2 accumulation (increase of PCO2 in the surrounding atmosphere), as encountered in midmural ventricular layers during in vivo ischemia, produced a significant decrease of pHo (6.30 versus 6.64) and pHi (6.65 versus 6.93) at 14 minutes of ischemia. The presence of red blood cells in the intravascular space after arrest of coronary perfusion showed a pronounced effect on extracellular and intracellular acidosis. If the muscles were perfused with CO2/HCO3(-)-buffered perfusate in the absence of red blood cells, the changes of pHo and pHi were significantly larger (pHo, 6.00 versus 6.64; pHi, 6.46 versus 6.93 at 14 minutes) during ischemia. Actively developed force during ischemia was not significantly influenced by conditions modulating pHi. It decreased by 82% after 5 minutes, even when no significant change of pHi was recorded. By contrast, ischemic contracture was dependent on intracellular acidification. It developed earlier in the absence of red blood cells or with low extracellular buffer capacity. It is concluded that during acute myocardial ischemia 1) extracellular acidification exceeds intracellular acidification, 2) the decrease in pHi is inhomogeneous because of local variation in CO2 accumulation and diffusion, 3) the decrease in pHi is relatively small in the presence of red blood cells, and 4) the development of ischemic contracture but not the early decline in active tension is sensitive to changes in pHi.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3