Cationic amphiphiles prevent calcium leak induced by ATP depletion in myocardial cells.

Author:

Clague J R1,Post J A1,Langer G A1

Affiliation:

1. Cardiovascular Research Laboratory, UCLA School of Medicine 90024-1760.

Abstract

Excessive calcium influx is important in the irreversible injury of cardiac myocytes and other cell types. The mechanism is unknown, but possibilities include L-type channels, Na(+)-Ca2+ exchange, sarcolemmal (SL) defects, and calcium leak channels. In this study, metabolic inhibition was used to induce ATP depletion and augmented calcium influx in cultured cardiac myocytes. Inhibition of the L-type calcium channel and Na(+)-Ca2+ exchanger had no significant effect on the calcium leak. There was no significant lactate dehydrogenase release, indicating that the leak did not occur through major SL defects. No alterations in the asymmetric distribution of SL phospholipids were demonstrated. Phospholipid rearrangements were therefore not responsible. The leak was unaffected by 0.5 mM cadmium and 1 microM nifedipine but was augmented by 50 microM nifedipine, characteristics in common with calcium leak channels. Insertion of the cationic amphiphiles dodecyltrimethylammonium bromide or polymyxin B sulfate into the SL had a profound inhibitory effect on the calcium leak. The anionic amphiphile sodium dodecyl sulfate had the opposite effect, and the neutral amphiphile lauryl acetate had no effect. These results suggest that an alteration in the SL surface charge affects calcium leak. It is proposed that the augmented calcium influx occurs via calcium leak channels and that these can be modulated by charged amphiphiles.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3