Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle.

Author:

Klietsch R1,Ervasti J M1,Arnold W1,Campbell K P1,Jorgensen A O1

Affiliation:

1. Department of Anatomy & Cell Biology, University of Toronto, Ontario, Canada.

Abstract

The expression and subcellular distribution of the dystrophin-glycoprotein complex and laminin were examined in cardiac muscle by immunoblot and immunofluorescence analysis of rabbit and sheep papillary muscle. The five dystrophin-associated proteins (DAPs), 156-DAG, 59-DAP, 50-DAG, 43-DAG, and 35-DAG, were identified in rabbit ventricular muscle and found to codistribute with dystrophin in both papillary myofibers and Purkinje fibers. The DAPs and dystrophin codistributed not only in the free surface sarcolemma but also in interior regions of the myofibers where T tubules are present. Neither the DAPs nor dystrophin were detected in intercalated discs, a specialized region of cardiac sarcolemma where neighboring myocardial cells are physically joined by cell-cell junctions. Similarly, in bundles of Purkinje fibers, which lack T tubules, DAPs and dystrophin were also found to codistribute at the free surface sarcolemma but were not detected either in the region of surface sarcolemma closely apposed to a neighboring Purkinje fiber or in interior regions of these myofibers. Comparison between the distribution of the dystrophin-glycoprotein complex and laminin showed that laminin codistributes with the components of this complex in both papillary myofibers and Purkinje fibers. These results are consistent with previous findings demonstrating that the extracellularly exposed 156-DAG (dystroglycan) of the skeletal muscle dystrophin-glycoprotein complex binds laminin, a component of the basement membrane. Although we demonstrate that DAPs, dystrophin, and laminin colocalize to the sarcolemma in rabbit and sheep papillary myofibers as they do in skeletal myofibers, the most striking difference between the subcellular distribution of these proteins in cardiac and skeletal muscle is that the dystrophin-glycoprotein complex and laminin also localize to regions of the fibers where T tubules are distributed in cardiac but not in skeletal muscle. These results imply that the protein composition and thus possibly some functions of T tubules in cardiac muscle are distinct from those of skeletal muscle.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3