Affiliation:
1. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas.
Abstract
This study characterizes the sequential alterations of, and relations between, multiple electrolytes in cytoplasm, mitochondria, and whole cells during hypoxia and on reoxygenation in isolated neonatal rat ventricular myocytes. Subcellular electrolyte content and distribution were measured by electron probe x-ray microanalysis, membrane phospholipid degradation by tritiated arachidonic acid release, and cell morphology by electron microscopy. At 1-2 hours of hypoxia, the myocyte population showed a loss of cytoplasmic potassium, magnesium, and chlorine without alteration of cytoplasmic sodium or calcium. Mitochondria showed increased potassium with unchanged magnesium content. There was no morphological evidence of cell injury or tritiated arachidonic acid release. At 3-5 hours of hypoxia, the myocyte population showed a further loss of cytoplasmic potassium and magnesium and an increase in cytoplasmic sodium, chlorine, and calcium. At a single-cell level, the increase in cytoplasmic sodium preceded the increase in cytoplasmic calcium. Mitochondria showed increased sodium and chlorine and decreased magnesium before increased calcium content; potassium loss was manifest only at 5 hours of hypoxia. At 3-5 hours of hypoxia, there was also tritiated arachidonic acid release and morphological evidence of cell injury. Reoxygenation for 1 hour after 5 hours of hypoxia partially reversed the mean alterations of all electrolytes, except calcium, in the cytoplasm of the myocyte population, whereas analysis was required at a single-cell level to show a partial reversal in calcium levels in cytoplasm of reoxygenated cells. Reoxygenation for 1 hour after 5 hours of hypoxia partially reversed the mean alterations of all electrolytes, including calcium, in the mitochondria of the myocyte population. Recovery of potassium in the cytoplasm correlated with reduction of mitochondrial calcium content on reoxygenation and best predicted recovery of cellular homeostasis of sodium, chlorine, magnesium, and calcium. This study demonstrates that in this experimental model of hypoxia 1) initial losses of cytoplasmic potassium and magnesium occur in the absence of cell injury; 2) increases of sodium, chlorine, and calcium occur in association with cell injury, with sodium increasing before calcium; 3) membrane phospholipid degradation and electrolyte derangement, including increased calcium, may contribute to reversible and irreversible phases of cell injury; 4) analysis of calcium at a subcompartmental level and at a single-cell level is required to correlate reduction of calcium on reoxygenation with recovery of cell homeostasis; 5) reduction of calcium content in mitochondria may predict recovery of cell homeostasis; and 6) recovery of potassium on reoxygenation best predicts recovery of cell membrane function and cell homeostasis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Reference56 articles.
1. Reimer K Jennings RB: Myocardial ischemia hypoxia and infarction in Fozzard HA Haber E Jennings RB Katz AM Morgan HE (eds): The Heart and Cardiovascular System. New York Raven Press Publishers 1986 pp 1133-1201
2. Buja LM: Basic pathologic processes of the heart: Relationship to cardiomyopathies in Sperelakis N (ed): Physiology and Pathophysiology of the Heart ed 2. Boston Mass Kluver Academic Publishers 1989 pp 43-57
3. Fleckenstein A: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions in Harris P Opie LH (eds): Calcium and the Heart. London Academic Press Inc 1971 pp 135-188
4. The role of calcium in the ischemic myocardium;Nayler WG;Am J Pathol,1981
5. Membrane injury and calcium homeostasis in the pathogenesis of coagulation necrosis;Farber JL;Lab Invest,1982
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献