Mechanics and composition of cerebral arterioles in renal and spontaneously hypertensive rats.

Author:

Baumbach G L1,Hajdu M A1

Affiliation:

1. University of Iowa College of Medicine, Department of Pathology, Iowa City 52242.

Abstract

The purpose of this study was to examine effects of hypertension on mechanics of cerebral arterioles in nongenetic and genetic models of chronic hypertension. Pressure (servo null) and diameter were measured in pial arterioles of anesthetized renal hypertensive rats (one-kidney, one clip), uninephrectomized normotensive rats, spontaneously hypertensive rats, and normotensive Wistar-Kyoto rats. During maximal dilatation with EDTA, external diameter of pial arterioles at 70 mm Hg pial arteriolar pressure was not significantly different in renal hypertensive and normotensive rats (86 +/- 5 [mean +/- SEM] versus 84 +/- 4 microns) but was less in spontaneously hypertensive rats than in Wistar-Kyoto rats (81 +/- 3 versus 92 +/- 3 microns; p < 0.05). Cross-sectional area of the arteriolar wall (histological) was greater in renal hypertensive than in normotensive rats (1,360 +/- 131 versus 952 +/- 89 microns 2; p < 0.05) and in spontaneously hypertensive rats than in Wistar-Kyoto rats (1,294 +/- 97 versus 817 +/- 86 microns 2; p < 0.05). The stress-strain relation obtained from pressure-diameter data during maximal dilatation with EDTA indicated that distensibility of pial arterioles, when fully relaxed, was greater in renal hypertensive and spontaneously hypertensive rats than in normotensive and Wistar-Kyoto rats. We used point-counting stereology to quantitate composition of pial arterioles in renal hypertensive rats. Cross-sectional area of smooth muscle and elastin was significantly greater in renal hypertensive than in normotensive rats (smooth muscle, 947 +/- 108 versus 620 +/- 62 microns 2; elastin, 101 +/- 11 versus 55 +/- 6 microns 2; p < 0.05), whereas cross-sectional area of collagen and basement membrane was not significantly different in the two groups (collagen, 6 +/- 1 versus 5 +/- 1 microns 2; basement membrane, 120 +/- 12 versus 104 +/- 8 microns 2). Thus, we conclude that 1) cerebral arterioles undergo hypertrophy in both renal hypertensive and spontaneously hypertensive rats; 2) cerebral arterioles in renal hypertensive rats do not undergo "remodeling" with a reduction in external diameter, whereas external diameter is smaller in spontaneously hypertensive than in Wistar-Kyoto rats; 3) distensibility of cerebral arterioles, when fully relaxed, is increased in renal hypertensive rats and is greater in spontaneously hypertensive than in Wistar-Kyoto rats; and 4) the distensible components of the arteriolar wall are increased disproportionately in cerebral arterioles of renal hypertensive rats, which may contribute to increases in arteriolar distensibility.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference59 articles.

1. Mechanics of cerebral arterioles in hypertensive rats;Baumbach GL;Ore Res,1988

2. Composition and mechanics of cerebral arterioles in hypertensive rats;Baumbach GL;Am J Pathol,1988

3. Remodeling of cerebral arterioles in chronic hypertension.

4. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells;Geisterfer AAT;Ore Res,1988

5. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3