Role of hypothalamic-renal noradrenergic systems in hypotensive action of potassium.

Author:

Fujita T1,Sato Y1

Affiliation:

1. Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Japan.

Abstract

To clarify the role of the renal and hypothalamic noradrenergic systems in the antihypertensive actions of dietary potassium supplementation in salt-loaded spontaneously hypertensive rats (SHR), we measured systolic blood pressure and norepinephrine turnover, which was determined from the rate of decline of tissue norepinephrine concentration after the administration of alpha-methyl-p-tyrosine, in 5-week-old SHR or age-matched Wistar-Kyoto (WKY) rats eating normal-NaCl (0.66%) or high-NaCl (8%) diet with supplementation of 8% KCl. In WKY rats, neither high-sodium nor high-potassium diets had an effect on blood pressure with no change in renal or hypothalamic norepinephrine turnover. In SHR, however, salt loading accelerated the development of hypertension. Potassium supplementation did not affect blood pressure in normal-sodium SHR but attenuated the rise in blood pressure with salt loads. Correspondingly, renal norepinephrine turnover in SHR was increased compared with that of WKY rats, and salt loading further potentiated the increased turnover in the kidney; however, no changes in hypothalamic turnover occurred. Potassium supplementation attenuated the rise in blood pressure with salt loads and the increased renal turnover. Stimulation of sympathetic discharge by cold exposure after the administration of alpha-methyl-p-tyrosine produced marked depletion of norepinephrine in most tissues. The loss of norepinephrine was significantly greater in both kidney and hypothalamus of salt-loaded SHR than in those of normal-sodium SHR, but potassium could normalize this. Thus, potassium not only diminished the increased renal norepinephrine turnover in the kidney under normal conditions but also attenuated the augmented renal and hypothalamic norepinephrine turnover by cold stress in salt-loaded SHR.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3