Inhibition of Atrial Natriuretic Peptide Excretory Action by Bradykinin

Author:

Boric Mauricio P.1,Croxatto Héctor R.1

Affiliation:

1. From the Unidad de Regulación Neurohumoral, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile.

Abstract

Abstract We examined whether the excretory effect of atrial natriuretic peptide could be antagonized by intravenously administered bradykinin or by elevated endogenous kinin levels attained during converting enzyme inhibition. Urinary volume and sodium and potassium excretion were determined every 20 minutes in female, anesthetized Sprague-Dawley rats (weight, 0.19 to 0.22 kg) infused with 10 μL/min isotonic glucose. In some experiments, urinary cGMP content was measured by radioimmunoassay. Two intravenous boluses of 209 pmol (0.5 μg) atrial natriuretic peptide were given before and after the injection of test substances, and the response ratio was used to quantify inhibition. Single injections of 94.3 or 142 pmol (100 or 150 ng) bradykinin, 3 minutes prior to atrial natriuretic peptide, inhibited the excretion of water, sodium, and potassium by 70%, 75%, and 50%, respectively. Larger (236 to 472 pmol) or smaller (23.6 to 47.2 pmol) bradykinin doses were ineffective. None of the bradykinin doses tested affected basal urinary output, systemic pressure, or the modest depressor effect of atrial natriuretic peptide. The anti–atrial natriuretic peptide effect of bradykinin was completely prevented by the kinin receptor antagonist Hoe 140. Converting enzyme inhibition with ramipril (96 nmol IV) also blunted atrial natriuretic peptide diuresis and natriuresis by 70% and reduced urinary cGMP excretion by 50%. These effects of ramipril were mediated by endogenous kinin accumulation, since they were abolished by pretreatment with Hoe 140. It is concluded that intrarenal kinins modulate the renal actions of atrial natriuretic peptide, and at a precise concentration bradykinin strongly antagonizes atrial natriuretic peptide by preventing its transduction mechanism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3