Reduction and Restoration of Mitochondrial DNA Content After Focal Cerebral Ischemia/Reperfusion

Author:

Chen Hong1,Hu Chaur-Jong1,He Yong Y.1,Yang Ding-I1,Xu Jan1,Hsu Chung Y.1

Affiliation:

1. From the Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St Louis, Mo. Drs Chen and Hu contributed equally to this study.

Abstract

Background and Purpose Oxidative damage of mitochondrial DNA (mtDNA) in the ischemic brain is expected after ischemia/reperfusion injury. A recent study demonstrated limited patterns of mtDNA deletion in the brain after ischemia/reperfusion. We studied the ischemia/reperfusion-induced global changes of mtDNA integrity and its restoration in a rat model of transient focal ischemia in vivo. Methods Changes in mtDNA content in the ischemic brain were assessed with the use of a rat stroke model featuring transient severe ischemia confined to the cerebral cortex of the right middle cerebral artery territory for 30 or 90 minutes. A new long polymerase chain reaction method, using mouse DNA as an internal standard, was applied to measure the relative content of intact rat mtDNA. Southern hybridization following alkaline gel electrophoresis was conducted in a parallel study to confirm long polymerase chain reaction results. Results A reduction in mtDNA content was found after ischemia for 30 and 90 minutes. The mtDNA was restored to near nonischemic levels 24 hours after 30- but not 90-minute ischemia. Conclusions These results confirm that ischemia/reperfusion causes mtDNA damages. Restoration of the mtDNA content to nonischemic levels after 30-minute ischemia raises the possibility that mtDNA repair or repletion occurs after brief ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3