Triflusal Posttreatment Inhibits Glial Nuclear Factor-κB, Downregulates the Glial Response, and Is Neuroprotective in an Excitotoxic Injury Model in Postnatal Brain

Author:

Acarin Laia1,González Berta1,Castellano Bernardo1

Affiliation:

1. From the Unit of Histology, School of Medicine, Department of Cell Biology, Physiology, and Immunology, Autonomous University of Barcelona, Bellaterra, Spain.

Abstract

Background and Purpose Nuclear factor-κB (NF-κB) and the signal transducer and activator of transcription 3 (STAT3) are important transcription factors regulating inflammatory mechanisms and the glial response to neural injury, determining lesion outcome. In this study we evaluate the ability of triflusal (2-acetoxy-4-trifluoromethylbenzoic acid), an antiplatelet agent inhibitor of NF-κB activation, to improve lesion outcome after excitotoxic damage to the immature brain. Methods Postnatal day 9 rats received an intracortical injection of the excitotoxin N -methyl- d -aspartate (NMDA) and oral administration of triflusal (30 mg/kg) either as 3 doses before NMDA injection (pretreatment) or as a single dose 8 hours after NMDA injection (posttreatment). After survival times of 10 and 24 hours, brains were processed for toluidine blue staining, tomato lectin histochemistry, and glial fibrillary acidic protein, NF-κB, and STAT3 immunocytochemistry. Results NMDA-lesioned animals that were not treated with triflusal showed activation of NF-κB in neuronal cells at first and in glial cells subsequently. Animals that received pretreatment with triflusal showed a strong downregulation of neuronal and glial NF-κB but a similar development of the glial response and an equivalent lesion volume compared with nontreated animals. In contrast, animals receiving triflusal posttreatment showed increased early neuronal NF-κB but a reduction in the subsequent glial NF-κB, accompanied by important downregulation of the microglial and astroglial response and a drastic reduction in the lesion size. STAT3 activation was not affected by triflusal treatment. Conclusions Triflusal posttreatment diminishes glial NF-κB, downregulates the glial response, and improves the lesion outcome, suggesting a neuroprotective role of this compound against excitotoxic injury in the immature brain.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3