Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice

Author:

Adamski Mateusz G.1,Sternak Magdalena1,Mohaissen Tasnim1,Kaczor Dawid1,Wierońska Joanna M.2,Malinowska Monika3,Czaban Iwona3,Byk Katarzyna4,Lyngsø Kristina S.5,Przyborowski Kamil1,Hansen Pernille B.L.56,Wilczyński Grzegorz3,Chlopicki Stefan17

Affiliation:

1. Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland

2. Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland

3. Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland

4. Institute of Nuclear Physics, Polish Academy of Sciences, Warsaw, Poland

5. University of Southern Denmark, Odense, Denmark

6. Cardiovascular and Metabolic Disease, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden

7. Chair of Pharmacology, Jagiellonian University, Medical College, Kraków, Poland

Abstract

Background Although advanced heart failure ( HF ) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Methods and Results Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte‐specific overexpression of G‐αq*44 protein were studied before the end‐stage HF , at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6‐ to 10‐month‐old but not in 3‐month‐old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood‐brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E‐selectin immunoreactivity, which was accompanied by increased amyloid‐β 1‐42 accumulation in piriform cortex and increased cortical oxidative stress (8‐ OH dG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO ‐dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3‐ to 10‐month‐old Tgαq*44 mice, but it was not associated with increased platelet‐dependent thrombogenicity. Conclusions We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3