Analysis of Right Ventricular Myocardial Stiffness and Relaxation Components in Children and Adolescents With Pulmonary Arterial Hypertension

Author:

Hayabuchi Yasunobu1,Ono Akemi1,Homma Yukako1,Kagami Shoji1

Affiliation:

1. Department of Pediatrics, Tokushima University, Tokushima, Japan

Abstract

Background The rate of left ventricular pressure decrease during isovolumic relaxation is traditionally assessed algebraically via 2 empirical indices: the monoexponential and logistic time constants (τ E and τ L ). Since the pattern of right ventricular ( RV ) pressure decrease is quite different from that of the left ventricular, we hypothesized that novel kinematic model parameters are more appropriate and useful to evaluate RV diastolic dysfunction. Methods and Results Eight patients with pulmonary arterial hypertension (age 12.5±4.8 years) and 20 normal subjects (control group; age 12.3±4.4 years) were enrolled. The kinematic model was parametrized by stiffness/restoring Ek and damping/relaxation μ. The model predicts isovolumic relaxation pressure as a function of time as the solution of d 2 P/dt 2 +(1/μ)dP/dt+EkP=0, based on the theory that the pressure decay is determined by the interplay of inertial, stiffness/restoring, and damping/relaxation forces. In the assessment of RV diastolic function, τ E and τ L did not show significant differences between the pulmonary arterial hypertension and control groups (46.8±15.5 ms versus 32.5±14.6 ms, and 19.6±5.9 ms versus 14.5±7.2 ms, respectively). The pulmonary arterial hypertension group had a significantly higher Ek than the control group (915.9±84.2 s −2 versus 487.0±99.6 s −2 , P <0.0001) and a significantly lower μ than the control group (16.5±4.3 ms versus 41.1±10.4 ms, P <0.0001). These results show that the RV has higher stiffness/elastic recoil and lower cross‐bridge relaxation in pulmonary arterial hypertension. Conclusions The present findings indicate the feasibility and utility of kinematic model parameters for assessing RV diastolic function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3